Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microbiol Immunol Infect ; 56(1): 150-162, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35864068

RESUMEN

BACKGROUND: Trichomonas vaginalis, a parasitic flagellated protozoan, is one of the main non-viral sexually transmitted diseases worldwide. Treatment options for trichomoniasis are limited to nitroimidazole compounds. However, resistance to these drugs has been reported, which requires the development of new anti-Trichomonas agents that confer suitable efficacy and less toxicity. METHODS: In the present work, we assessed the effectiveness of the liposomal system containing essential oils of Bunium persicum and Trachyspermum ammi against T. vaginalis in vitro. The chemical composition of B. persicum and T. ammi were analyzed using gas chromatography-mass spectrometry (GC-MS). Liposomal vesicles were prepared with phosphatidylcholine) 70%) and cholesterol)30%) using the thin-film method. The essential oils of B. persicum and T. ammi were loaded into the liposomes using the inactive loading method. Liposomal vesicles were made for two plants separately. Their physicochemical features were tested using Zeta-Sizer, AFM and SEM. The anti-Trichomonas activity was determined after 12 and 24 h of parasite cultures in TYI-S-33 medium. RESULTS: After 12 and 24 h of administration, the IC50 of the B. persicum essential oil nano-liposomes induced 14.41 µg/mL and 45.19 µg/mL, respectively. The IC50 of T. ammi essential oil nano-liposomes induced 8.08 µg/mL and 25.81 µg/mL, respectively. CONCLUSIONS: These data suggested that nano-liposomes of the essential oils of B. persicum and T. ammi may be a promising alternative to current treatments for Trichomonas infection.


Asunto(s)
Ammi , Apiaceae , Aceites Volátiles , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Apiaceae/química , Extractos Vegetales
2.
Int Immunopharmacol ; 86: 106766, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32652504

RESUMEN

BACKGROUND: Limonene (LIM) and its main metabolite perillyl alcohol (POH) are ingredients found in food with promising chemical entities due to their pharmacological profile. In this study, we hypothesized that LIM and POH are two molecules capable of accelerating the regenerative process and alleviating neuropathic pain. METHODS: Animals were treated daily (LIM, POH and saline) for 28 days and during this period evaluated for mechanical hyperalgesia, astrocyte participation by immunofluorescence for GFAP, and ELISA was used to quantify IL-1ß and TNF-α in the spinal cord. Western blot analysis of the following proteins was also performed: GFAP, GAP-43, NGF and ERK. For motor deficit analysis, tests were performed to assess hind paw muscle strength and footprints through gait (SFI). RESULTS: Both POH and LIM accelerated the regenerative process and improved motor deficits comparing to positive control; however, POH was more effective, particularly between the 2nd and 3rd week after the nerve injury, increasing GAP-43, NGF and the phosphorylated ERK immunocontent. Moreover, POH and LIM were able to reduce hyperalgesia and astrocytosis. CONCLUSIONS: Both substances, LIM and POH, improved the regeneration process and sensory and motor function recovery in the PNI model in mice by mitigating the inflammatory reactions and up-regulating the neurotrophic process.


Asunto(s)
Antiinflamatorios/uso terapéutico , Aditivos Alimentarios/uso terapéutico , Limoneno/uso terapéutico , Monoterpenos/uso terapéutico , Neuronas Motoras/fisiología , Neuralgia/terapia , Traumatismos de los Nervios Periféricos/terapia , Animales , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Interleucina-1beta/metabolismo , Masculino , Ratones , Factor de Crecimiento Nervioso/metabolismo , Neuralgia/dietoterapia , Regeneración/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
3.
Antibiotics (Basel) ; 9(6)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570712

RESUMEN

Pteridophytes have been widely used in several systems of medicine. Several reports have increasingly assessed their bioactive effects, but for Sphaerostephanos unitus (L.) Holttum, only its antibacterial potential has been assessed. In this sense, the present study was carried out to reveal the phytochemical profile and to determine the toxicity, antioxidant, antidiabetic, and anti-inflammatory potential of S. unitus. Brine shrimp lethality, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, phosphomolybdenum assay, superoxide radical scavenging activity, 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assay (ABTS), and in vitro α-amylase inhibitory and membrane stabilization assays were applied. S. unitus extract toxicity showed variable mortality percentages, with LC50 values ranging from 4 to 30 mg/mL. DPPH radical scavenging effects of S. unitus extracts were as follows: methanol > acetone > petroleum ether > chloroform. S. unitus acetone extract displayed the strongest phosphomolybdenum reduction (10 ± 2 mg Ascorbic Acid Equivalent/g). The studied extracts also revealed efficient, superoxide scavenging effects in a dose-dependent manner. In S. unitus, the highest ABTS radical scavenging rate was observed in the chloroform extract (3000 ± 40 µmol/g). The S. unitus anti-inflammatory effect was as follows: petroleum ether > chloroform > methanol > acetone. In S. unitus extract, the highest percentage of α-amylase activity (80%) was observed for the petroleum ether extract (25 µg/mL). Faced with these findings, further studies should be performed to isolate and identify the S. unitus compounds responsible for their antioxidant, antidiabetic and anti-inflammatory effects.

4.
Antibiotics (Basel) ; 9(5)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408576

RESUMEN

Considering the evidence that essential oils, as well as safrole, could modulate bacterial growth in different resistant strains, this study aims to characterize the phytochemical profile and evaluate the antibacterial and antibiotic-modulating properties of the essential oil Ocotea odorífera (EOOO) and safrole against efflux pump (EP)-carrying strains. The EOOO was extracted by hydrodistillation, and the phytochemical analysis was performed by gas chromatography coupled to mass spectrometry (GC-MS). The antibacterial and antibiotic-modulating activities of the EOOO and safrole against resistant strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were analyzed through the broth microdilution method. The EP-inhibiting potential of safrole in association with ethidium bromide or antibiotics was evaluated using the S. aureus 1199B and K2068 strains, which carry genes encoding efflux proteins associated with antibiotic resistance to norfloxacin and ciprofloxacin, respectively. A reduction in the MIC of ethidium bromide or antibiotics was used as a parameter of EP inhibition. The phytochemical analysis identified 16 different compounds in the EOOO including safrole as the principal constituent. While the EOOO and safrole exerted clinically relevant antibacterial effects against S. aureus only, they potentiated the antibacterial activity of norfloxacin against all strains evaluated by our study. The ethidium bromide and antibiotic assays using the strains of S. aureus SA1119B and K2068, as well as molecular docking analysis, indicated that safrole inhibits the NorA and MepA efflux pumps in S. aureus. In conclusion, Ocotea odorifera and safrole presented promising antibacterial and antibiotic-enhancing properties, which should be explored in the development of drugs to combat antibacterial resistance, especially in strains bearing genes encoding efflux proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...